viernes, 6 de noviembre de 2009

MATRICES Y DETERMINANTES

MATRICES Y DETERMINANTES

En matemáticas, una matriz es una tabla de números consistente en cantidades abstractas que pueden sumarse y multiplicarse. Las matrices se utilizan para describir sistemas de ecuaciones lineales, realizar un seguimiento de los coeficientes de una aplicación lineal y registrar los datos que dependen de varios parámetros. Las matrices se describen en el campo de la teoría de matrices. Pueden sumarse, multiplicarse y descomponerse de varias formas, lo que también las hace un concepto clave en el campo del álgebra lineal.
Definiciones y notaciones
Una matriz es una tabla cuadrada o rectangular de números (llamados elementos o entradas de la matriz) ordenados en filas y columnas, donde una fila es cada una de las líneas horizontales de la matriz y una columna es cada una de las líneas verticales. A una matriz con m filas y n columnas se le denomina matriz m-por-n (escrito m×n), y a m y n dimensiones de la matriz. Las dimensiones de una matriz siempre se dan con el número de filas primero y el número de columnas después. Comúnmente se dice que una matriz m-por-n tiene un orden de m × n ("orden" tiene el significado de tamaño). Dos matrices se dice que son iguales si son del mismo orden y tienen los mismos elementos.
Al elemento de una matriz que se encuentra en la fila i-ésima y la columna j-ésima se le llama elemento i,j o elemento (i,j)-iésimo de la matriz. Se vuelve a poner primero las filas y después las columnas.
Casi siempre, se denotan a las matrices con letras mayúsculas mientras que se utilizan las correspondientes letras en minúsculas para denotar a los elementos de las mismas. Por ejemplo, al elemento de una matriz A que se encuentra en la fila i-ésima y la columna j-ésima se le denota como ai,j o a[i,j]. Notaciones alternativas son A[i,j] o Ai,j. Además de utilizar letras mayúsculas para representar matrices, numerosos autores representan a las matrices con fuentes en negrita para distinguirlas de otros tipos de variables. Así A es una matriz, mientras que A es un escalar.
Normalmente se escribe para definir una matriz A m × n con cada entrada en la matriz A[i,j] llamada aij para todo 1 ≤ i ≤ m y 1 ≤ j ≤ n. Sin embargo, la convención del inicio de los índices i y j en 1 no es universal: algunos lenguajes de programación comienzan en cero, en cuál caso se tiene 0 ≤ i ≤ m − 1 y 0 ≤ j ≤ n − 1.
Una matriz con una sola columna o una sola fila se denomina a menudo vector, y se interpreta como un elemento del espacio euclídeo. Una matriz 1 × n (una fila y n columnas) se denomina vector fila, y una matriz m × 1 (una columna y m filas) se denomina vector columna.


La matriz

es una matriz 4x3. El elemento A[2,3] o a2,3 es 7.
La matriz

es una matriz 1×9, o un vector fila con 9 elementos.
Operaciones básicas
Suma o adición
Dadas las matrices m-por-n ,A y B, su suma A + B es la matriz m-por-n calculada sumando los elementos correspondientes (i.e. (A + B)[i, j] = A[i, j] + B[i, j] ). Es decir, sumar cada uno de los elementos homólogos de las matrices a sumar. Por ejemplo:

Producto por un escalar
Dada una matriz A y un escalar c, su producto cA se calcula multiplicando el escalar por cada elemento de A (i.e. (cA)[i, j] = cA[i, j] ).
Ejemplo

Propiedades
Sean A y B matrices y c y d escalares.
• Clausura: Si A es matriz y c es escalar, entonces cA es matriz.
• Asociatividad: (cd)A = c(dA)
• Elemento Neutro: 1•A = A
• Distributividad:
o De escalar: c(A+B) = cA+cB
o De matriz: (c+d)A = cA+dA
Producto


Diagrama esquemático que ilustra el producto de dos matrices A y B dando como resultado la matriz AB.
Artículo principal: Producto de matrices
El producto de dos matrices se puede definir sólo si el número de columnas de la matriz izquierda es el mismo que el número de filas de la matriz derecha. Si A es una matriz m×n y B es una matriz n×p, entonces su producto matricial AB es la matriz m×p (m filas, p columnas) dada por:

para cada par i y j.
Por ejemplo:

Propiedades
Si los elementos de la matriz pertenecen a un cuerpo, y puede definirse el producto, el producto de matrices tiene las siguientes propiedades:
• Propiedad asociativa: (AB)C = A(BC).
• Propiedad distributiva por la derecha: (A + B)C = AC + BC.
• Propiedad distributiva por la izquierda: C(A + B) = CA + CB.
• En general, el producto de matrices tiene divisores de cero: Si A.B = 0 , No necesariamente A ó B son matrices nulas
• El producto de matrices no verifica la propiedad de simplificación: Si A.B = A.C, No necesariamente B=C
El producto de dos matrices generalmente no es conmutativo, es decir, AB ≠ BA. La división entre matrices, es decir, la operación que podría producir el cociente A / B, no se encuentra definida. Sin embargo, existe el concepto de matriz inversa, sólo aplicable a las matrices cuadradas.

1 comentario:

  1. mmm hubiera estado mejor si hubieras puesto los principales tipos de matrices como la matriz identidad, cuadrada, etc por cierto algunos ejemplos sobre el algoritmo de gauss( ojo no el metodo de eliminacion de gauss-jordan)

    ResponderEliminar